Respuesta :

Answer:

[tex] \huge\boxed{\boxed{\huge \sf- x - 30}}[/tex]

[tex] \boxed{\bf \: Option \: A}[/tex]

Step-by-step explanation:

Given expression :

[tex] \tt3(x - 6) - 4(x + 3)[/tex]

We need to find the expression which is equivalent to the given expression.

Solution :

[tex] \tt 3(x - 6) - 4(x + 3)[/tex]

[tex] \underline{\rm \: Apply \: Distributive \: property:-}[/tex]

[tex] \tt = 3(x) + 3 \times ( - 6) + ( - 4)(x )+ ( - 4)(3)[/tex]

[tex] \tt = 3x + ( - 18) + ( - 4x) + ( - 12)[/tex]

[tex] \rm \: This\; expression \: may \: be \: rewritten\; as,[/tex]

[tex] \tt = 3x + ( - 4x) + ( - 18) + ( - 12)[/tex]

[tex] \underline{\rm \: Combine \: like \: terms:-}[/tex]

[tex] \tt = - x + ( - 18 + ( - 12)[/tex]

[tex] \tt = - x + ( - 18 - 12)[/tex]

[tex] \tt = - x + (- 30)[/tex]

[tex] \tt = - x - 30[/tex]

This matches with Option A.

Hence, the expression which is equivalent to the given expression would be,

[tex] \boxed{\sf - x - 30}[/tex]

Option A is correct!

[tex] \rule{225pt}{2pt}[/tex]

I hope this helps!

Let me know if you have any questions.

Simplify :

  • 3(x - 6) - 4(x + 3)

Options :

  1. -x - 30
  2. -x - 9
  3. -x - 6
  4. -x² - 30

Answer :

  • Option 1(A)

[tex] \: [/tex]

Solution :

3(x - 6) - 4(x + 3)

  • By applying the distributive property we get

➟ 3x - 18 - 4x + (-12)

Combining the like terms : [In the given expression, the terms having the same literal factors are called like terms]

➟ 3x - 18 - 4x + (-12)

➟ 3x - 4x - (18 + 12)

➟ -x - 30

Hence , the required answer is Option A (1) .