Respuesta :

Answer:

[tex]\boxed{\sf x = - 8}[/tex]

Step-by-step explanation:

Given equation :

[tex]16 = - 2x[/tex]

We need to find the value of x .

Solution :

[tex] \tt \implies16 = - 2x[/tex]

Change their sides :

[tex]\tt \implies - 2x = 16[/tex]

Divide both sides by -2 :-

[tex]\tt \implies \dfrac{ - 2x}{ - 2} = \dfrac{16}{ - 2} [/tex]

Cancel The LHS:

  • Cancel -2 and -2 :

[tex]\tt \implies \cfrac{ \cancel{ - 2}x}{ \cancel{ - 2}} = \cfrac{16}{ 2} [/tex]

[tex]\tt \implies \cfrac{1x}{1} = \cfrac{16}{ - 2} [/tex]

[tex]\tt \implies{1x} = \cfrac{16}{ - 2} [/tex]

[tex]\tt \implies{x} = \cfrac{16}{ - 2} [/tex]

Cancel the RHS :

  • Cancel 16 and -2 by 2:

[tex]\tt \implies{x} = \cfrac{ \cancel{16} {}^{ 8} }{ \cancel{ {- 2}} ^{ - 1} } [/tex]

  • Results to,

[tex]\tt \implies{x} = \cfrac{ 8}{ - 1} [/tex]

[tex]\tt \implies{x} = - 8[/tex]

We're done!

Hence, the value of x would be -8 .

[tex] \rule{225pt}{2pt}[/tex]

I hope this helps!

Let me know if you have any questions.