What is the value of b in each equation below? Explain your reasoning.
a) log, 243=5
b) log, 0.001=-3

Answer:
Step-by-step explanation:
Factorize 243
243 = 3 * 3 * 3 * 3 * 3 = 3⁵
[tex]log_{b} \ 243 = 5 \\\\ log_{b} \ 3^{5} = 5\\\\ 5*log_{b} \ 3 = 5\\\\\\ So, b = 3 [/tex]because [tex]log_{3} \ 3 = 1[/tex]
b = 3
[tex]b)0.001 = 10^{-3}\\\\ log_{b} \ 0.001 = -3\\\\ log_{b} \ 10^{-3}=-3\\\\ -3*log_{b} \ 10 = -3\\\\ So, b = 10[/tex]
Answer:
Step-by-step explanation:
Using the log rule: [tex]log_ab=c[/tex] is equivalent to [tex]a^c=b[/tex]
a)
[tex]log_b243=5[/tex]
[tex]b^5=243[/tex]
[tex]b=243^{\frac{1}{5}} [/tex]
[tex]b=3[/tex]
b)
[tex]log_b0.001=-3[/tex]
[tex]b^{-3}=0.001[/tex]
[tex]b=0.001^{-\frac{1}{3} }[/tex]
[tex]b=10[/tex]