Respuesta :

Answer: (x-2)^3

Step-by-step explanation:

Frist step; (((x3) -  (2•3x^2)) +  12x) -  8

-----------------------------------------------------------------------

second step; x^3-6x^2+12x-8  is not a perfect cube

-------------------------------------------------------------------------

third step; Factoring:  x^3-6x^2+12x-8

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x^3-8

Group 2:  -6x^2+12x

Pull out from each group separately :

Group 1:   (x^3-8) • (1)

Group 2:   (x-2) • (-6x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

-------------------------------------------------------------------------------------------------------------

step four;

Find roots (zeroes) of :       F(x) = x^3-6x^2+12x-8

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -8.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4 ,8

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -27.00    

     -2       1        -2.00        -64.00    

     -4       1        -4.00        -216.00    

     -8       1        -8.00       -1000.00    

     1       1        1.00        -1.00    

     2       1        2.00        0.00      x-2

     4       1        4.00        8.00    

     8       1        8.00        216.00    

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  x^3-6x^2+12x-8

can be divided with  x-2

-----------------------------------------------------------------------------------------------------------

Step 5; Polynomial Long Division

Dividing :  x^3-6x^2+12x-8

                             ("Dividend")

By         :    x-2    ("Divisor")

dividend     x3  -  6x2  +  12x  -  8

- divisor  * x^2     x^3  -  2x^2        

remainder      -  4x^2 + 12x  - 8

- divisor  * -4x^1      -  4x^2 + 8x    

remainder             4x - 8

- divisor  * 4x^0             4x - 8

remainder                0

Quotient :  x^2-4x+4  Remainder:  0

Graph the cubic using its end behavior and a few selected points.

Falls to the left and rises to the right

-------------------------------------------------------------------------------------------------------------

stp6;

Factoring  x2-4x+4

The first term is,  x2  its coefficient is  1 .

The middle term is,  -4x  its coefficient is  -4 .

The last term, "the constant", is  +4

Step-1 : Multiply the coefficient of the first term by the constant   1 • 4 = 4

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   -4 .

     -4    +    -1    =    -5

     -2    +    -2    =    -4    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -2  and  -2

                    x2 - 2x - 2x - 4

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-2)

             Add up the last 2 terms, pulling out common factors :

                   2 • (x-2)

Step-5 : Add up the four terms of step 4 :

                   (x-2)  •  (x-2)

            Which is the desired factorization

-----------------------------------------------------------------------------------------------------

2.6    Multiply  (x-2)  by  (x-2)

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-2)  and the exponents are :

         1 , as  (x-2)  is the same number as  (x-2)1

and   1 , as  (x-2)  is the same number as  (x-2)1

The product is therefore,  (x-2)(1+1) = (x-2)2

-------------------------------------------------------------------------------------------------------------

Multiply  (x-2)2   by  (x-2)

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-2)  and the exponents are :

         2

and   1 , as  (x-2)  is the same number as  (x-2)1

The product is therefore,  (x-2)(2+1) = (x-2)3

-----------------------------------------------------------------------------------------------------------

Answer; (x - 2)^3

Ver imagen dar119
Ver imagen dar119