Respuesta :

Answer:

[tex]-20\left(\frac{x^2}{2}+5x\right)+C[/tex]

Step-by-step explanation:

[tex]\int \:-20\left(x+5\right)dx[/tex]

[tex]\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx[/tex]

[tex]-20\cdot \int \:x+5dx[/tex]

[tex]\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex]

[tex]-20\left(\int \:xdx+\int \:5dx\right)[/tex]

[tex]=-20\left(\frac{x^2}{2}+5x\right)[/tex]

[tex]\mathrm{Add\:a\:constant\:to\:the\:solution}[/tex]

[tex]=-20\left(\frac{x^2}{2}+5x\right)+C[/tex]