Respuesta :

The questions are illustrations of Pythagoras theorem and trigonometry ratios.

What is Pythagoras theorem?

Pythagoras theorem is used to determine the lengths of the legs of a right triangle.

It is represented as:

[tex]a^2 = b^2 + c^2[/tex]

Where:

b & c are the legs of the triangle, while a is the hypotenuse

Question 16

Start by calculating the value of x, using the sine ratio

[tex]\sin(30) = \frac{x}{16\sqrt 3}[/tex]

Evaluate sin(30)

[tex]0.5 = \frac{x}{16\sqrt 3}[/tex]

Solve for x

[tex]x = 0.5 * 16\sqrt 3[/tex]

[tex]x = 8\sqrt 3[/tex]

Next, calculate the length (l) of the boundary between both triangles using Pythagoras theorem

[tex](16\sqrt 3)^2 = (8\sqrt 3)^2 +l^2[/tex]

[tex]768 = 192 +l^2[/tex]

Collect like terms

[tex]l^2 = 768 -192[/tex]

[tex]l^2 = 576[/tex]

Take the square root of both sides

[tex]l = 24[/tex]

Given that the angle is 45 degrees, it means that:

[tex]z = y[/tex]

So, we have:

[tex]z^2 + y^2 = 24^2[/tex]

[tex]z^2 + z^2 = 24^2[/tex]

[tex]2z^2 = 576[/tex]

Divide through by 2

[tex]z^2 = 288[/tex]

Take the square root of both sides

[tex]z= 12\sqrt 2[/tex]

Hence, the values of x, y and z are:

[tex]x = 8\sqrt 3[/tex]

[tex]y= 12\sqrt 2[/tex]

[tex]z= 12\sqrt 2[/tex]

Question 18

Start by calculating the value of z, using the sine ratio

[tex]\sin(45) = \frac{z}{20}[/tex]

Evaluate sin(45)

[tex]\frac{\sqrt 2}{2} = \frac{z}{20}[/tex]

Solve for z

[tex]z = \frac{\sqrt 2}{2} * 20[/tex]

[tex]z = 10\sqrt 2[/tex]

Next, calculate the value of y using tangent ratio

[tex]\tan(30) = \frac{y}{10\sqrt 2}[/tex]

Solve for y

[tex]y = \tan(30) * 10\sqrt 2[/tex]

Evaluate tan(30)

[tex]y = \frac{\sqrt 3}{3} * 10\sqrt 2[/tex]

[tex]y = \frac{10\sqrt 6}{3}[/tex]

Next, calculate the value of x using sine ratio

[tex]\sin(30) = \frac{10/3\sqrt 6}{x}[/tex]

Solve for x

[tex]x = \frac{10/3\sqrt 6}{\sin(30)}[/tex]

Evaluate sin(30)

[tex]x = \frac{10/3\sqrt 6}{1/2}[/tex]

[tex]x = \frac{20\sqrt 6}{3}[/tex]

Hence, the values of x, y and z are:

[tex]x = \frac{20\sqrt 6}{3}[/tex]

[tex]y = \frac{10\sqrt 6}{3}[/tex]

[tex]z = 10\sqrt 2[/tex]

Question 20

Start by calculating the value of z, using the sine ratio

[tex]\sin(45) = \frac{z}{10\sqrt 6}[/tex]

Evaluate sin(45)

[tex]\frac{\sqrt 2}{2} = \frac{z}{10\sqrt 6}[/tex]

Solve for z

[tex]z = \frac{\sqrt 2}{2} * 10\sqrt 6[/tex]

[tex]z = 5\sqrt {12[/tex]

Simplify

[tex]z = 10\sqrt {3[/tex]

Next, calculate the value of y using tangent ratio

[tex]\tan(30) = \frac{10\sqrt 3}{y}[/tex]

Solve for y

[tex]y = \frac{10\sqrt 3}{\tan(30)}[/tex]

Evaluate tan(30)

[tex]y = \frac{10\sqrt 3}{1/\sqrt 3}[/tex]

Simplify

[tex]y = 10\sqrt 3 * \sqrt 3[/tex]

[tex]y = 30[/tex]

Next, calculate the value of x using sine ratio

[tex]\sin(30) = \frac{10\sqrt 3}{x}[/tex]

Solve for x

[tex]x = \frac{10\sqrt 3}{\sin(30)}[/tex]

Evaluate sin(30)

[tex]x = \frac{10\sqrt 3}{1/2}[/tex]

[tex]x = 20\sqrt 3[/tex]

Hence, the values of x, y and z are:

[tex]x = 20\sqrt 3[/tex]

[tex]y = 30[/tex]

[tex]z = 10\sqrt {3[/tex]

Read more about Pythagoras theorem and trigonometry ratios at:

https://brainly.com/question/6241673