unit 7 right triangles & trigonometry homework 2 special right triangles pls help with 16,18 and 20

The questions are illustrations of Pythagoras theorem and trigonometry ratios.
Pythagoras theorem is used to determine the lengths of the legs of a right triangle.
It is represented as:
[tex]a^2 = b^2 + c^2[/tex]
Where:
b & c are the legs of the triangle, while a is the hypotenuse
Question 16
Start by calculating the value of x, using the sine ratio
[tex]\sin(30) = \frac{x}{16\sqrt 3}[/tex]
Evaluate sin(30)
[tex]0.5 = \frac{x}{16\sqrt 3}[/tex]
Solve for x
[tex]x = 0.5 * 16\sqrt 3[/tex]
[tex]x = 8\sqrt 3[/tex]
Next, calculate the length (l) of the boundary between both triangles using Pythagoras theorem
[tex](16\sqrt 3)^2 = (8\sqrt 3)^2 +l^2[/tex]
[tex]768 = 192 +l^2[/tex]
Collect like terms
[tex]l^2 = 768 -192[/tex]
[tex]l^2 = 576[/tex]
Take the square root of both sides
[tex]l = 24[/tex]
Given that the angle is 45 degrees, it means that:
[tex]z = y[/tex]
So, we have:
[tex]z^2 + y^2 = 24^2[/tex]
[tex]z^2 + z^2 = 24^2[/tex]
[tex]2z^2 = 576[/tex]
Divide through by 2
[tex]z^2 = 288[/tex]
Take the square root of both sides
[tex]z= 12\sqrt 2[/tex]
Hence, the values of x, y and z are:
[tex]x = 8\sqrt 3[/tex]
[tex]y= 12\sqrt 2[/tex]
[tex]z= 12\sqrt 2[/tex]
Question 18
Start by calculating the value of z, using the sine ratio
[tex]\sin(45) = \frac{z}{20}[/tex]
Evaluate sin(45)
[tex]\frac{\sqrt 2}{2} = \frac{z}{20}[/tex]
Solve for z
[tex]z = \frac{\sqrt 2}{2} * 20[/tex]
[tex]z = 10\sqrt 2[/tex]
Next, calculate the value of y using tangent ratio
[tex]\tan(30) = \frac{y}{10\sqrt 2}[/tex]
Solve for y
[tex]y = \tan(30) * 10\sqrt 2[/tex]
Evaluate tan(30)
[tex]y = \frac{\sqrt 3}{3} * 10\sqrt 2[/tex]
[tex]y = \frac{10\sqrt 6}{3}[/tex]
Next, calculate the value of x using sine ratio
[tex]\sin(30) = \frac{10/3\sqrt 6}{x}[/tex]
Solve for x
[tex]x = \frac{10/3\sqrt 6}{\sin(30)}[/tex]
Evaluate sin(30)
[tex]x = \frac{10/3\sqrt 6}{1/2}[/tex]
[tex]x = \frac{20\sqrt 6}{3}[/tex]
Hence, the values of x, y and z are:
[tex]x = \frac{20\sqrt 6}{3}[/tex]
[tex]y = \frac{10\sqrt 6}{3}[/tex]
[tex]z = 10\sqrt 2[/tex]
Question 20
Start by calculating the value of z, using the sine ratio
[tex]\sin(45) = \frac{z}{10\sqrt 6}[/tex]
Evaluate sin(45)
[tex]\frac{\sqrt 2}{2} = \frac{z}{10\sqrt 6}[/tex]
Solve for z
[tex]z = \frac{\sqrt 2}{2} * 10\sqrt 6[/tex]
[tex]z = 5\sqrt {12[/tex]
Simplify
[tex]z = 10\sqrt {3[/tex]
Next, calculate the value of y using tangent ratio
[tex]\tan(30) = \frac{10\sqrt 3}{y}[/tex]
Solve for y
[tex]y = \frac{10\sqrt 3}{\tan(30)}[/tex]
Evaluate tan(30)
[tex]y = \frac{10\sqrt 3}{1/\sqrt 3}[/tex]
Simplify
[tex]y = 10\sqrt 3 * \sqrt 3[/tex]
[tex]y = 30[/tex]
Next, calculate the value of x using sine ratio
[tex]\sin(30) = \frac{10\sqrt 3}{x}[/tex]
Solve for x
[tex]x = \frac{10\sqrt 3}{\sin(30)}[/tex]
Evaluate sin(30)
[tex]x = \frac{10\sqrt 3}{1/2}[/tex]
[tex]x = 20\sqrt 3[/tex]
Hence, the values of x, y and z are:
[tex]x = 20\sqrt 3[/tex]
[tex]y = 30[/tex]
[tex]z = 10\sqrt {3[/tex]
Read more about Pythagoras theorem and trigonometry ratios at:
https://brainly.com/question/6241673