Respuesta :

Answer:

[tex]{ \tt{k {x}^{2} - (3k + 6)x + (4k + 8) = 0}}[/tex]

» Sum is (3k + 6)/k

» Product is (4k + 8)/k

☑ From the data in the question:

[tex]{ \tt{sum = 3(product)}} \\ { \tt{ \frac{(3k + 6)}{k} = 3 { \huge \{} \frac{(4k + 8)}{k}{ \huge{ \}}} }} \\ \\ { \tt{3k + 6 = 3(4k + 8)}}[/tex]

» Factorise the left hand side equation:

[tex]{ \tt{3(k + 2) = 3(4k + 8)}} \\ { \tt{k + 2 = 4k + 8}} \\ { \tt{4k - k = 2 - 8}} \\ { \tt{3k = - 6}} \\ { \tt{k = - \frac{6}{3} }} \\ \\ { \boxed{ \tt{ \: k = - 2 \: }}}[/tex]