Decide whether quadrilateral JKLM is a rectangle, a rhombus, or a square. More than one answer may apply!

J(-2,7) K(7,2) L(-2,-3) M(-11,2)

Decide whether quadrilateral JKLM is a rectangle a rhombus or a square More than one answer may apply J27 K72 L23 M112 class=

Respuesta :

[tex]\\ \tt\longmapsto JK=\sqrt{(7+2)^2+(2-7)^2}=\sqrt{81+25}=\sqrt{106}[/tex]

[tex]\\ \tt\longmapsto KL=\sqrt{(-2-7)^2+(-3-2)^2}=\sqrt{81+25}=\sqrt{106}[/tex]

[tex]\\ \tt\longmapsto LM=\sqrt{(-11+2)^2+(2+3)^2}=\sqrt{106}[/tex]

[tex]\\ \tt\longmapsto JM=\sqrt{(-11+2)^2+(2-7)^2}=\sqrt{106}[/tex]

Now

[tex]\\ \tt\longmapsto JL=\sqrt{(-2+2)^2+(-3-7)^2}=\sqrt{100}=10[/tex]

[tex]\\ \tt\longmapsto KM=\sqrt{(-11-7)^2+(2-2)^2}=18[/tex]

As sides are equal and diagonals are unequal it's a Rhombus

Answer:

  • B. Rhombus

Step-by-step explanation:

Plot the points:

  • (-2,7), (7,2), (-2,-3), (-11,2)

Connect them in order and connect the diagonals.

See attached.

We see all sides are equal and the diagonals are perpendicular.

This is therefore rhombus

Ver imagen mhanifa

Otras preguntas