Table I contains outputs of the function f(x)=b^xf(x)=b
x
f, left parenthesis, x, right parenthesis, equals, b, start superscript, x, end superscript for some xxx values, and Table II contains outputs of the function g(x)=\log_b(x)g(x)=log
b

(x)g, left parenthesis, x, right parenthesis, equals, log, start base, b, end base, left parenthesis, x, right parenthesis for some xxx values. In both functions, bbb is the same positive constant.

Respuesta :

The tables are illustrations of logarithmic and exponential functions

  • The missing value in table I is 1.292
  • The missing value in table II is 1.544

How to determine the missing values

The functions are given as:

[tex]f(x) = b^x[/tex] --- table I

[tex]g(x) = log_b(x)[/tex] --- table II

The above equations mean that:

Tables I and II are inverse functions

On the table II (see attachment), we have:

[tex]g(8) = 1.292[/tex]

This means that:

[tex]f(1.292) = 8[/tex]

Also, On the table I, we have:

[tex]f(1.544) = 12[/tex]

This means that:

[tex]g(12) = 1.544[/tex]

So, the missing values for both tables are 1.292 and 1.544

Read more about logarithmic and exponential functions at:

https://brainly.com/question/8993571

Ver imagen MrRoyal

Answer:

C

Step-by-step explanation: