Respuesta :
Answer:
[tex] \boxed{\boxed{\tt706.5 \: m {}^{2}}} [/tex]
Step-by-step explanation:
Given:
[tex] \rightarrow \sf \: Diameter = \tt \: 3 0 \: m[/tex]
To Find:
[tex] \rightarrow\sf \: Surface\; Area[/tex]
Solution:
We know that the formula of Surface area of the circle is,
[tex] \rightarrow \ttπ(r^2)[/tex]
Where, R means Radius.
But we don't know what's the radius, So we'll use the formula where we can find the radius.
That is,
[tex]\boxed{ \sf \: Formula \: of \: Radius = \cfrac{1}{2} \times diameter}[/tex]
Now put the value of diameter:
[tex] \sf{Radius} = \cfrac{1}{ 2} \: \times \: 30 \: m[/tex]
Solve it:
[tex] \sf \: Radius = \cfrac{1}{ \cancel2 \: {}^{1} } \times \cancel{30} \:^{15} m[/tex]
[tex] \sf{Radius} = 1 \times 15 \: m[/tex]
[tex]\sf{Radius} =15 \: m[/tex]
Now,
We know the value of Radius , So now let us use the formula of Surface area of a circle : (Then we can find the solution)
[tex]\boxed{ \sf \: Surface \: area \: of \: the \: Circle =\pi(r {}^{2} )}[/tex]
We know that π = 3.14 .
So put the values accordingly:
[tex] \sf \: Surface \: area \: of \: the \: Circle = 3.14( {15}^{2} )[/tex]
Solve it:
[tex] \sf \: Surface \: area \: of \: the \: Circle =3.14(15 \times 15)[/tex]
[tex] \sf \: Surface \: area \: of \: the \: Circle =3.14(225) \: {}[/tex]
[tex]\sf \: Surface \: area \: of \: the \: Circle =\boxed{\sf 706.5 \: {m}^{2}} [/tex]
Hence, it's surface area would be 706.5 m^2.
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!