Respuesta :

Answer:

[tex] \boxed{\boxed{\tt706.5 \: m {}^{2}}} [/tex]

Step-by-step explanation:

Given:

[tex] \rightarrow \sf \: Diameter = \tt \: 3 0 \: m[/tex]

To Find:

[tex] \rightarrow\sf \: Surface\; Area[/tex]

Solution:

We know that the formula of Surface area of the circle is,

[tex] \rightarrow \ttπ(r^2)[/tex]

Where, R means Radius.

But we don't know what's the radius, So we'll use the formula where we can find the radius.

That is,

[tex]\boxed{ \sf \: Formula \: of \: Radius = \cfrac{1}{2} \times diameter}[/tex]

Now put the value of diameter:

[tex] \sf{Radius} = \cfrac{1}{ 2} \: \times \: 30 \: m[/tex]

Solve it:

[tex] \sf \: Radius = \cfrac{1}{ \cancel2 \: {}^{1} } \times \cancel{30} \:^{15} m[/tex]

[tex] \sf{Radius} = 1 \times 15 \: m[/tex]

[tex]\sf{Radius} =15 \: m[/tex]

Now,

We know the value of Radius , So now let us use the formula of Surface area of a circle : (Then we can find the solution)

[tex]\boxed{ \sf \: Surface \: area \: of \: the \: Circle =\pi(r {}^{2} )}[/tex]

We know that π = 3.14 .

So put the values accordingly:

[tex] \sf \: Surface \: area \: of \: the \: Circle = 3.14( {15}^{2} )[/tex]

Solve it:

[tex] \sf \: Surface \: area \: of \: the \: Circle =3.14(15 \times 15)[/tex]

[tex] \sf \: Surface \: area \: of \: the \: Circle =3.14(225) \: {}[/tex]

[tex]\sf \: Surface \: area \: of \: the \: Circle =\boxed{\sf 706.5 \: {m}^{2}} [/tex]

Hence, it's surface area would be 706.5 m^2.

[tex] \rule{225pt}{2pt}[/tex]

I hope this helps!