Respuesta :

Answer:

Angle C is 128.49°

Step-by-step explanation:

Recall the Law of Sines

[tex]\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}[/tex]

Set up a proportion with the given information to find angle B

[tex]\frac{sin30^\circ}{15}=\frac{sinB}{11}[/tex]

[tex]11sin30^\circ=15sinB[/tex]

[tex]11(0.5)=15sinB[/tex]

[tex]5.5=15sinB[/tex]

[tex]\frac{5.5}{15}=sinB[/tex]

[tex]B=sin^{-1}(\frac{5.5}{15})[/tex]

[tex]B\approx21.51^\circ[/tex]

Use angles A and B to find angle C by the Triangle Angle Sum Theorem

[tex]180^\circ=A^\circ+B^\circ+C^\circ[/tex]

[tex]180^\circ=30^\circ+21.51^\circ+C^\circ[/tex]

[tex]180^\circ=51.51^\circ+C^\circ[/tex]

[tex]128.49^\circ=C^\circ[/tex]

Therefore, angle C is 128.49°