Reduce the fraction. Hint: Factor the numerator and the denominator first.

[tex]a^2+2ac+c^2/a^2+ac-ax-cx[/tex]

Respuesta :

Answer:

  • (a + c) / (c - x)

Step-by-step explanation:

Simplify:

  • (a² + 2ac + c²) / (c² + ac - ax - cx) =
  • (a + c)² / (c(a + c) - x(a + c)) =
  • (a + c)² / (a + c)(c - x) =                                 Cancel out (a + c)
  • (a + c) / (c - x)

Answer:

[tex]\frac{(a+c)}{(a-x)}[/tex]

Step-by-step explanation:

Ok, first let's factor out the numerator:

Factor: Numerator

We can use the special binomial product (a + b)² = a² + 2ab + b²

  • a² + 2ac + c²
  • (a + c)²

Factor: Denominator

We can factor by grouping

  • a² - ax + ac - cx
  • a(a - x) + c(a - x)
  • (a - x)(a + c)

Simplify:

We can remove like terms.

  • [tex]\frac{(a+c)(a+c)}{(a-x)(a+c)}[/tex]       <= Cancel out (a+c)
  • [tex]\frac{(a+c)}{(a-x)}[/tex]

-Chetan K