Respuesta :

The vertex of a function is the minimum of the maximum of the function

The function in vertex form is [tex]f(x) = (x - 8)^2 - 56[/tex]

How to rewrite the function

The function is given as:

[tex]f(x) = x^2 + 8 - 16x[/tex]

Rewrite the equation as:

[tex]f(x) = x^2 - 16x+ 8[/tex]

Let k represent the coefficient of x.

[tex]k = -16[/tex]

Divide both sides by 2

[tex]k/2 = -8[/tex]

Take the square of both sides

[tex](k/2)^2 = 64[/tex]

So, we have:

[tex]f(x) = x^2 - 16x+ 8[/tex]

[tex]f(x) = x^2 - 16x + 64 - 64 + 8[/tex]

[tex]f(x) = x^2 - 16x + 64 - 56[/tex]

Rewrite as:

[tex]f(x) = [x^2 - 16x + 64] - 56[/tex]

Express as a perfect square equation

[tex]f(x) = (x - 8)^2 - 56[/tex]

Hence, the function in vertex form is [tex]f(x) = (x - 8)^2 - 56[/tex]

Read more about vertex form at:

https://brainly.com/question/15914313