Respuesta :

Step-by-step explanation:

Given:

log_(a) abc = x+1,

log_(b) abc = y+1,

log_(c) abc =z+1

Asked: x + y + z + 2 = ?

Solution:

Let

log_(a) abc = x+1 ⇛log_(abc) a = {1/(x+1)} →→→Eqn(1)

log_(b) abc = y+1 ⇛log_(abc) b = {1/(y+1)} →→→Eqn(2)

log_(c) abc = z+1 ⇛log_(abc) c = {1/(z+1)} →→→Eqn(3)

On adding equation (1),(2) and (3) then

log_(abc) a + log_(abc) b + log_(abc) c = {1/(x+1) + {1/(y+1)} + {1/(z+1)}

⇛log_(abc) abc = {{(y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)}/{(x+1)(y+1)(z+1)}]

⇛1 = {{(y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)}/{(x+1)(y+1)(z+1)}]

⇛{(x+1)(y+1)}(z+1) = (y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)

⇛{x(y+1)+1(y+1)}(z+1) = (y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)

⇛{xy + x + 1 + y}(z+1) = (y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)

⇛{xy + x + y + 1}(z+1) = (y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)

⇛z(xy + x + y + 1) + 1(xy + x + y + 1) = (y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)

⇛xyz + xz + yz + z + xy + x + y + 1 = (y+1)(z+1) + (z+1)(x+1) + (x+1)(y+1)

⇛xyz + xz + yz + z + xy + x + y + 1 = y(z+1)+1(z+1) + z(x+1)+1(x+1) + x(y+1)+1(y+1)

⇛xyz + xz + yz + z + xy + x + y + 1 = yz + y + z + 1 + xz + z + x + 1 + xy + x + y + 1

⇛x+y+z = y + z + 1 + x + 1

⇛x+y+z = x + y + z + 2

Therefore, x + y + z + 2 = x + y + z

Answer: Hence, the value of x + y + z + 2 = x + y + z.

also read similar questions: Let p= 5/((1/log2x)+(1/log3x)+(1/log4x)+(1/log5x)) and (120)^p=3 2,then

the

value

of

x?

https://brainly.com/question/26624014?referrer