Respuesta :

Given:

[tex] \\ [/tex]

  • Diagonal 1 = 19 ft

[tex] \\ [/tex]

  • Diagonal 2 = 29 ft

[tex] \\ [/tex]

To find:

[tex] \\ [/tex]

  • Area of figure (rhombus)

[tex] \\ [/tex]

Solution:-

[tex] \\ [/tex]

Ad we know Area of rhombus has two Formulas:-

[tex] \\ [/tex]

First :-

Area = (Diagonal 1 × Diagonal 2)/2

[tex] \\ [/tex]

Second:-

Area = B × h

[tex] \\ [/tex]

As we know in this case base and height aren't given, so we will use first formula to find rhombus.

[tex] \\ [/tex]

We know:-

[tex] \\ [/tex]

[tex] \dashrightarrow \sf{}Area \: of \: rhombus = \dfrac{diagonal_1 \times diagonal_2}{2} \\ [/tex]

[tex] \\ [/tex]

[tex] \dashrightarrow \sf{}Area \: of \: rhombus = \dfrac{19 \times 29}{2} \\ [/tex]

[tex] \\ [/tex]

[tex] \dashrightarrow \sf{}Area \: of \: rhombus = \dfrac{551}{2} \\ [/tex]

[tex] \\ [/tex]

[tex] \dashrightarrow \bf{}Area \: of \: rhombus = 275.5 \: {ft}^{2} \\ [/tex]

[tex] \\ [/tex]

know more :-

[tex] \\ [/tex]

[tex]\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}[/tex]