Respuesta :

We are given

  • Height of cylinder is = 4cm
  • Lateral surface area of cylinder is = 24πcm²

We are asked to find volume of the given cylinder.

Let the radius be "r".Then according to the question,it’s given –

[tex]\qquad[/tex] [tex]\pink{\twoheadrightarrow\bf Curved\: surface\: area _{(Cylinder)}= 2\pi r h }[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 2\pi r h = 24 \pi[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 2\cancel{\pi} rh = 24 \cancel{\pi}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r =\dfrac{24}{2h}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r = \dfrac{24}{2\times 4}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r = \dfrac{24}{8}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r = \cancel{\dfrac{24}{8}}[/tex]

[tex]\qquad[/tex] [tex]\pink{\twoheadrightarrow\bf r = 3 \: cm}[/tex]

Now, Let's find volume of cylinder

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf V_{(Cylinder)} = \pi {r}^{2}h}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf V_{(Cylinder)} = \pi \times 3^2\times 4 [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf V_{(Cylinder)} = \pi \times 9 \times 4[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf V_{(Cylinder)} = \pi \times 36[/tex]

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf V_{(Cylinder)} = 36 \pi \: cm^3}[/tex]

  • Henceforth, volume of cylinder is 36π cm³.

Step-by-step explanation:

Given :-

  • Height is = 4cm
  • Lateral surface area of cylinder is = 24πcm²

to find :-

  • volume of the given cylinder.

Solution :-

Lateral surface area of cylinder = 2πrh

24π cm = 2πrh

Cancelling π on both the sides ,

24/2h = r

putting the value of h i.e, 4 cm

24/2×4 cm = r

3 cm = radius

Now volume of Cylinder = πr²h

putting all the values ,

Volume = 3.14 × 3² × 4 cm³

Volume = 113.04 cm³