Respuesta :
Given Equation :-
[tex]\qquad[/tex][tex] \pink{\bf \longrightarrow 5(p-3) = 63}[/tex]
We are asked to find the value of p in the above equation.
First multiply (p-3) by 5 –
[tex]\qquad[/tex][tex] \sf \longrightarrow 5 \times p - 5 \times 3 = 63[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 5p - 15 = 63[/tex]
Now, add 15 to both sides –
[tex]\qquad[/tex][tex] \sf \longrightarrow 5p -15 +15 = 63 +15 [/tex]
Now, we can cancel 15 from Left side –
[tex]\qquad[/tex][tex] \sf \longrightarrow 5p - \cancel{15 }+\cancel{15 }= 63 +15 [/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 5p = 78[/tex]
Divide both sides by 5–
[tex]\qquad[/tex][tex] \sf \longrightarrow \dfrac{5p}{5} = \dfrac{78}{5}[/tex]
Cancel 5 from left side also cancel 78/5, which can be divided by 15.6.
[tex]\qquad[/tex][tex] \sf \longrightarrow \dfrac{\cancel{5}p}{\cancel{5}} =\cancel{\dfrac{ 78}{5}}[/tex]
[tex]\qquad[/tex][tex] \pink{\bf\longrightarrow p = 15.6}[/tex]
- Henceforth, value of p is 15.6.
Given :
- 5(p – 3) = 63
To Find :
- The value of p.
Solution :
[tex]\qquad\sf{ { \dashrightarrow{ 5(p - 3) = 63}}}[/tex]
Using Distributive property, we get :
[tex]\qquad\sf{ { \dashrightarrow{ 5p - 15 = 63}}}[/tex]
Now, Transposing (-15) to the right side, which then becomes positive :
[tex]\qquad\sf{ { \dashrightarrow{ 5p = 63 + 15}}}[/tex]
[tex]\qquad\sf{ { \dashrightarrow{ 5p = 78}}}[/tex]
Dividing 5 from both sides we get :
[tex]\qquad\sf{ { \dashrightarrow{ \dfrac{5p}{5} = \dfrac{78}{5} }}}[/tex]
[tex]\qquad\bf{ { \dashrightarrow{ p = 15.6 }}}[/tex]
⠀
- Therefore, the value of p = 15.6 .