Let f (d) represent the amount of pennies that Jamie puts into the jar on day d. Today is day 0. Select the statement that is true.


B. f(d+1)= 5(f(d))

C. f(d+1)= f(d)+1

D. f(d+1)= f(d)+5

Respuesta :

The correct statement that represents the arithmetic sequence for the amount of pennies that Jamie puts into the jar on day d is given by:

D. f(d+1)= f(d)+5

What is an arithmetic sequence?

In an arithmetic sequence, the difference between consecutive terms is always the same, called common difference d, hence, the relation can always be represented by:

f(n + 1) = f(n) + d

Researching the problem on the internet, it is found that:

  • On day 0, he puts 5 pennies.
  • On day 1, he puts 10.
  • On day 2, he puts 15, and so on...

Hence, the common difference is d = 15 - 10 = 10 - 5 = 5, and option D is correct.

More can be learned about arithmetic sequences at https://brainly.com/question/6561461