Respuesta :
1)
[tex]~~~~~~ \textit{Simple Interest Earned} \\\\ I = Prt\qquad \begin{cases} I=\textit{interest earned}\\ P=\textit{original amount deposited}\dotfill & \$2000\\ r=rate\to 6.4\%\to \frac{6.4}{100}\dotfill &0.064\\ t=years\dotfill &18 \end{cases} \\\\\\ I = (2000)(0.064)(18)\implies I=2304[/tex]
2)
[tex]~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$2000\\ r=rate\to 6.4\%\to \frac{6.4}{100}\dotfill &0.064\\ t=years\dotfill &30 \end{cases} \\\\\\ A=2000[1+(0.064)(30)]\implies A=2000(2.92)\implies A=5840[/tex]
Answer:
after 18 years : $477,685.19
after 30 years: $661,353.82
Step-by-step explanation:
interest formula: A=P(1+r/n)^nt
so...
2000(1+6.4/18)^18 = 477685.1913 rounds to $477,685.19
2000(1+6.4/30)^30 = 661353.8157 rounds to $661,353.82