Respuesta :
Answer:
DF = 4 in
Step-by-step explanation:
As m∠E = 45° then DE = DF
Therefore, as DE = 4in, DF = 4 in
As DE = 4in and DF = 4 in,
then EF = [tex]\sqrt{DE^2+DF^2} =\sqrt{4^2+4^2} =4\sqrt{2} \ \textsf{in}[/tex]

[tex]\\ \tt\hookrightarrow tan45=\dfrac{DF}{DE}[/tex]
[tex]\\ \tt\hookrightarrow 1=\dfrac{DF}{4}[/tex]
[tex]\\ \tt\hookrightarrow DF=4in[/tex]
Option A is correct
