Respuesta :

Answer:

STEP1:

2 Simplify — 3

Equation at the end of step1:

3 2 ((0-—)+2g)-(4+(—•g)) 5 3

STEP2:Rewriting the whole as an Equivalent Fraction

 2.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  3  as the denominator :

4 4 • 3 4 = — = ————— 1 3

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

4 • 3 + 2g 2g + 12 —————————— = ——————— 3 3

Equation at the end of step2:

3 (2g + 12) ((0 - —) + 2g) - ————————— 5 3

STEP3:

3 Simplify — 5

Equation at the end of step3:

3 (2g + 12) ((0 - —) + 2g) - ————————— 5 3

STEP4:

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  5  as the denominator :

2g 2g • 5 2g = —— = —————— 1 5

Adding fractions that have a common denominator :

 4.2       Adding up the two equivalent fractions

-3 + 2g • 5 10g - 3 ——————————— = ——————— 5 5

Equation at the end of step4:

(10g - 3) (2g + 12) ————————— - ————————— 5 3

STEP5:

STEP6:

Pulling out like terms :

 6.1     Pull out like factors :

   2g + 12  =   2 • (g + 6) 

Calculating the Least Common Multiple :

 6.2    Find the Least Common Multiple

      The left denominator is :       5 

      The right denominator is :       3