contestada

A triangle has vartices A(-2,4), B(6,2) and C(1,-1) .prove that ABC is is an isosceles right triangle

Respuesta :

Answer:

Triangle ABC has vertices A(0, 0), B(5, 2) and C(7,-3).

Show that ABC is isosceles.

If a triangle has vertices [tex]A(-2,4), \ B(6,2)[/tex] and [tex]C(1,-1)[/tex] then [tex]\triangle ABC[/tex] is an isosceles right triangle.

What is isosceles right triangle?

An Isosceles Right Triangle is a right triangle that have two equal sides.

To know whether it is Isosceles Right Triangle or not we will use ,

Distance formula [tex]= \sqrt{(x_{2} -x_{1})^{2} + (y_{2} -y_{1})^{2}}[/tex]

We have,

Vertices [tex]A(-2,4), \ B(6,2)[/tex] and [tex]C(1,-1)[/tex] of  [tex]\triangle ABC[/tex].

So

To find [tex]AB[/tex] coordinates of [tex]A[/tex] and [tex]B[/tex] will be used and so on;

[tex]AB=\sqrt{(6-(-2))^{2} +(2-4)^2} \ =\sqrt{(8)^2+ (-2)^2} \ = \sqrt{64+4} = \sqrt{68}[/tex]

[tex]BC=\sqrt{(1-6)^{2} +(-1-2)^2} \ =\sqrt{(-5)^2+ (-3)^2} \ = \sqrt{25+9} = \sqrt{34}[/tex]

[tex]AC=\sqrt{(1-(-2))^{2} +(-1-4)^2} \ =\sqrt{(3)^2+ (-5)^2} \ = \sqrt{9+25} = \sqrt{34}[/tex]

Here,

[tex]BC=AC[/tex] which means that two sides of  [tex]\triangle ABC[/tex]  are equal i.e. it is isosceles triangle.

And,

Using Pythagoras theorem;

[tex]AC^2+BC^2=AB^2[/tex]

[tex](\sqrt{34} )^2+(\sqrt{34} )^2=(\sqrt{68} )^2[/tex]

[tex]34+34=68[/tex]

[tex]68=68[/tex]

So, this is satisfying the Pythagoras theorem.

So, this is Isosceles Right Triangle because it is satisfying the Pythagoras theorem and property of isosceles triangle..

Hence, we can say that if a triangle has vertices [tex]A(-2,4), \ B(6,2)[/tex] and [tex]C(1,-1)[/tex] then [tex]\triangle ABC[/tex] is an isosceles right triangle.

To know more about Isosceles Right Triangle click here

https://brainly.com/question/3504067

#SPJ3