Respuesta :

As it's Given one two angles of triangle is 60°

let other angle be d

2 × 60° + d = 180°

d = 180° - 120°

d = 60°

All angles of triangle are equal

I.e 60°

.°. Triangle is equilateral and all sides are also equal.

[tex] \tt \: s = \dfrac{a + b + c}{2} [/tex]

So:-

[tex] \tt \: s = \dfrac{3 \times 30}{2} [/tex]

[tex] \\ \\ [/tex]

[tex] \tt \: s = \dfrac{90}{2} [/tex]

[tex] \\ \\ [/tex]

[tex] \tt \: s = 45[/tex]

Now Let's find Area:-

[tex] \\ \\ [/tex]

[tex] \tt area = \sqrt{s(s - a)(s - b)(s - c)} [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area = \sqrt{45(45 - 30)(45 - 30)(45 - 30)} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area = \sqrt{45 \times 15 \times 15 \times 15} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area =15 \sqrt{9 \times 5 \times 15} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area =15 \sqrt{3 \times 3 \times 5 \times 15} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area =15 \times 3 \sqrt{ 5 \times 15} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area =15 \times 3 \times 5 \sqrt{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area =15 \times 3 \times 5 \times 1.732[/tex]

[tex] \\ \\ [/tex]

[tex] \to \tt area =389.7[/tex]

Ver imagen Аноним

Otras preguntas