Respuesta :

Answer:

Step-by-step explanation:

use SOH CAH TOA to remember sin cos and tan functions

Sin = oppostive/hypotenuse
Cos = adjacent/hypotenuse
Tan = opposite/adjacent

22. cos(x) = b/c
24. sin(x) = 2/2sqrt(17) = 1/sqrt(17)
26. tan(x) = 2/8 = 1/4

28. cos(y) = 2/2sqrt(17) = 1/sqrt(17)
30. sin(30)
in a 30 60 90 triangle, the side opposite 30 is 1, the side opposite 60 is sqrt(3), the side opposite 90 is 2.
sin(30) = opposite/hypotenuse = 1/2/1 = 1/2
32.
in a 45 45 90 triangle, the side opposite 45 is 1, the side opposite 45 is 1, the side opposite 90 is sqrt2.

sin = opposite/hypotenuse = 1/sqrt(2)
34. cos(30) = sqrt(3)/2

36. tan(31) = AC/9 --> AC = 9tan(31) = 5.408

Answer:

22.  [tex]\dfrac{b}{c}[/tex]

24.  [tex]\dfrac{\sqrt{17} }{17}[/tex]

26.  [tex]\dfrac14[/tex]

28.  [tex]\dfrac{\sqrt{17} }{17}[/tex]

30.  [tex]\dfrac12[/tex]

32.  [tex]\dfrac{\sqrt{2} }{2}[/tex]

34.  [tex]\dfrac{\sqrt{3} }{2}[/tex]

36. AC = 5.41 (nearest hundredth)

Step-by-step explanation:

Using trig ratios:

[tex]sin(\theta)=\dfrac{O}{H}\\\\\\cos(\theta)=\dfrac{A}{H}\\\\\\tan(\theta)=\dfrac{O}{A}[/tex]

where [tex]\theta[/tex] is the angle, O is the side opposite the angle, A is the side adjacent the angle, H is the hypotenuse of a right angle

22. [tex]cos(x)=\dfrac{b}{c}[/tex]

24.  [tex]sin(x)=\dfrac{2}{2\sqrt{17} }=\dfrac{\sqrt{17} }{17}[/tex]

26. [tex]tan(x)=\dfrac{2}{8}=\dfrac14[/tex]

28. [tex]cos(y)=\dfrac{2}{2\sqrt{17} }=\dfrac{\sqrt{17} }{17}\dfrac{}{}[/tex]

30. [tex]sin(30)=\dfrac12[/tex]

32. [tex]sin(45)=\dfrac{\sqrt{2} }{2}[/tex]

34. [tex]cos(30)=\dfrac{\sqrt{3} }{2}[/tex]

36. [tex]tan(31)=\dfrac{AC}{9}[/tex]

[tex]\implies AC=9tan(31)=5.41[/tex] (nearest hundredth)