Respuesta :
- (5,4)
- (-3,-1)
Distance:-
- √(x2-x1)²+(y2-y1)²
- √(-3-5)²+(-1-4)²
- √(-8)²+(-5)²
- √64+25
- √89
- 9.43
Answer:
9.43 (nearest hundredth)
Step-by-step explanation:
[tex]\textsf{let}\:(x_1,y_1)=(-3,-1)[/tex]
[tex]\textsf{let}\:(x_2,y_2)=(5,4)[/tex]
To find the length of the line segment that connects the two given points, we can use the distance formula.
Distance between two points formula
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
(where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are the two points and d is the distance)
Simply substitute the given points into the formula and solve for d:
[tex]\begin{aligned}\implies d &=\sqrt{(5-(-3))^2+(4-(-1))^2}\\ & =\sqrt{(8)^2+(5)^2}\\ & = \sqrt{64+25}\\ & = \sqrt{89}\\ & = 9.43\:\sf(nearest\:hundredth)\end{aligned}[/tex]