Respuesta :

  • (5,4)
  • (-3,-1)

Distance:-

  • √(x2-x1)²+(y2-y1)²
  • √(-3-5)²+(-1-4)²
  • √(-8)²+(-5)²
  • √64+25
  • √89
  • 9.43

Answer:

9.43 (nearest hundredth)

Step-by-step explanation:

[tex]\textsf{let}\:(x_1,y_1)=(-3,-1)[/tex]

[tex]\textsf{let}\:(x_2,y_2)=(5,4)[/tex]

To find the length of the line segment that connects the two given points, we can use the distance formula.

Distance between two points formula

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

(where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are the two points and d is the distance)

Simply substitute the given points into the formula and solve for d:

[tex]\begin{aligned}\implies d &=\sqrt{(5-(-3))^2+(4-(-1))^2}\\ & =\sqrt{(8)^2+(5)^2}\\ & = \sqrt{64+25}\\ & = \sqrt{89}\\ & = 9.43\:\sf(nearest\:hundredth)\end{aligned}[/tex]