Solve
Solve
a cylinder of radius r cm and height h cm has a curved surface area A cm[tex] {}^{2} [/tex], where[tex]A = 2\pi rh.[/tex]
a) obtain a formula for h
b) find the value of h when A = 93 ,R = 2.5 and [tex]\pi[/tex]= 3.1​​

Respuesta :

A cylinder of radius r cm and height h cm has a curved surface area A cm². Where –

  • A = 2πrh cm²

a) We are asked to find formula for h.

[tex]\qquad[/tex][tex]\purple{ \bf \longrightarrow A=2 \pi rh }[/tex]

First, overturn the equation

[tex]\qquad[/tex][tex] \sf \longrightarrow 2 \pi rh =A[/tex]

Divide both sides by 2πr

[tex]\qquad[/tex][tex] \sf \longrightarrow \dfrac{2\pi rh}{2\pi r } = \dfrac{A}{2\pi r}[/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow \dfrac{\cancel{2 \pi r }h}{\cancel{2\pi r} } = \dfrac{A}{2\pi r}[/tex]

[tex]\qquad[/tex][tex] \purple{\bf \longrightarrow h = \dfrac{A}{2 \pi r }}[/tex]

b) Again, we are given –

  • Curved surface area, A = 93 cm²
  • Radius, r = 2.5 cm
  • π = 3.1

[tex]\qquad\qquad\quad\underline{\sf{Substituting \ Values \ :}}[/tex]

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

[tex]\qquad[/tex][tex] \bf \longrightarrow h = \dfrac{A}{2\pi r }[/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow h = \dfrac{93}{2 \times 3.1 \times 2.5 }[/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow h = \dfrac{93}{15.5}[/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow h =\cancel{ \dfrac{93}{15.5}}[/tex]

[tex]\qquad[/tex][tex]\pink{ \bf \longrightarrow h = 6\: cm }[/tex]

  • Henceforth, height of the cylinder is 6 cm.