Answer:
288[tex]\pi[/tex]
- cone with radius 12 and height 6
- cylinder with diameter 8 and height 18
- sphere with diameter 12
972[tex]\pi[/tex]
- cone with diameter 18 and height 36
- cylinder with diameter 12 and height 27
- sphere with radius 9
Step-by-step explanation:
[tex]\textsf{volume of a sphere} =\dfrac43\pi r^3[/tex]
[tex]\textsf{volume of a cone} =\dfrac13\pi r^2h[/tex]
[tex]\textsf{volume of a cylinder} =\pi r^2h[/tex]
[tex]\textsf{diameter} =2r[/tex]
(where r is the radius, h is the height and d is the diameter)
Input the given values of r (d) and/or h into the above equations
Cone
r = 12, h = 6: volume = 288[tex]\pi[/tex]
d = 18 ⇒ r = 9, h = 36: volume = 972 [tex]\pi[/tex]
Cylinder
d = 12 ⇒ r = 6, h = 27: volume = 972[tex]\pi[/tex]
d = 8 ⇒ r = 4, h = 18: volume = 288[tex]\pi[/tex]
Sphere
d = 12 ⇒ r = 6: volume = 288[tex]\pi[/tex]
r = 9: volume = 972[tex]\pi[/tex]