Respuesta :

[tex]\\ \rm\Rrightarrow sin(x+y)=\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx[/tex]

[tex]\\ \rm\Rrightarrow sin(x+y)=sinxcos\left(\dfrac{\pi}{3}\right)+cosxsin\left(\dfrac{\pi}{3}\right)[/tex]

  • sin(a+b)=sinacosb+cosasinb

[tex]\\ \rm\Rrightarrow sin(x+y)=sin\left(x+\dfrac{\pi}{3}\right)[/tex]

[tex]\\ \rm\Rrightarrow x+y=x+\dfrac{\pi}{3}[/tex]

[tex]\\ \rm\Rrightarrow y=\dfrac{\pi}{3}[/tex]

Option B is correct

Answer:

[tex]y=\dfrac{\pi}{3}[/tex]

Step-by-step explanation:

Given equation:

[tex]\sin (x+y) =\dfrac{1}{2} \sin(x) +\dfrac{\sqrt{3}}{2} \cos(x)[/tex]

[tex]\boxed{\begin{minipage}{6 cm}\underline{Trigonometric Identity}\\\\$\sin (A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$\\\end{minipage}}[/tex]

Use the sine trigonometric identity to rewrite sin(x+y) in terms of sin and cos:

[tex]\implies \sin(x+y)= \sin (x) \cos (y) + \cos (x) \sin (y)[/tex]

Substitute this into the given equation:

[tex]\begin{aligned}\sin (x+y) & =\dfrac{1}{2} \sin(x) +\dfrac{\sqrt{3}}{2} \cos(x)\\\\\implies \sin (x) \cos (y) + \cos (x) \sin (y) & =\dfrac{1}{2} \sin(x) +\dfrac{\sqrt{3}}{2} \cos(x)\end{aligned}[/tex]

Compare the left side of the equation with the right side:

[tex]\implies \cos (y) = \dfrac{1}{2}[/tex]

[tex]\implies \sin (y) = \dfrac{\sqrt{3}}{2}[/tex]

Therefore, solving for y:

[tex]\begin{aligned}\implies \cos (y) & = \dfrac{1}{2}\\y & = \cos^{-1}\left(\dfrac{1}{2}\right)\\y & = \dfrac{\pi}{3}\end{aligned}[/tex]

[tex]\begin{aligned}\implies \sin (y) & = \dfrac{\sqrt{3}}{2}\\y & = \sin^{-1}\left(\dfrac{\sqrt{3}}{2}\right)\\y & = \dfrac{\pi}{3}\end{aligned}[/tex]