Problem 7: Use the known Laplace Transforms
[tex]L({e}^{ λt}sinωt) = \frac{ ω}{(s - {λ)}^{2} + {ω}^{2} } [/tex]
and
[tex]L({e}^{ λt}cosωt) = \frac{s - λ}{(s - {λ)}^{2} + {ω}^{2} } [/tex]
and the result of Exercise 6 to find
[tex]L({te}^{ λt}cosωt)[/tex]
and
[tex]L({te}^{ λt}sinωt) [/tex]

Problem 7 Use the known Laplace TransformstexLe λtsinωt frac ωs λ2 ω2 texand texLe λtcosωt fracs λs λ2 ω2 texand the result of Exercise 6 to find texLte λtcosωt class=

Respuesta :

Let

[tex]F(s) = L\left\{e^{\lambda t} \sin(\omega t)\right\} = \dfrac{\omega}{(s-\lambda)^2 + \omega^2}[/tex]

By the result of ex. 6,

[tex]-F'(s) = L\left\{t e^{\lambda t} \sin(\omega t)\right\} = \boxed{\dfrac{2\omega (s-\lambda)}{\left((s-\lambda)^2 + \omega^2\right)^2}}[/tex]

In a similar way, you'll find that

[tex]L\left\{t e^{\lambda t} \cos(\omega t)\right\} = \boxed{\dfrac{(s-\lambda)^2 - \omega^2}{\left((s-\lambda)^2 + \omega^2\right)^2}}[/tex]