Respuesta :

RIGHT TRIANGLE

Answer:

  • [tex] \color{hotpink} \bold{10} [/tex]

— — — — — — — — — —

We can find the length of the missing side of the right triangle using the Pythagorean Theorem.

As you can see in the attached image, we are looking for b or the longer side/leg of the right triangle. (See the attached image for the right triangle.)

Using the formula c² = a² + b².

we let c=12.21 and a=7

  • [tex] c {}^{2} = {a}^{2} + {b}^{2} [/tex]

  • [tex] {12.21}^{2} = {7}^{2} + {b}^{2} [/tex]

  • [tex] {149.0841} = {7}^{2} + {b}^{2} [/tex]

By transposition/adding the additive inverse of 49.

  • [tex] {b}^{2} = {149.0841} - 49[/tex]

The difference of 149.0841 - 49 is 100.084

  • [tex] {b}^{2} = {100.084}[/tex]

  • [tex] {b}= \sqrt{100.084 \: } [/tex]

  • [tex] b = 10.0042[/tex]

  • [tex] b \approx \underline{ \boxed{ \blue{ 10}}}[/tex]

Hence, the measures of the longer side/leg is 10 units.

— — — — — — — — — —

We can also find the longer leg of the right triangle using the formula

  • [tex] \underline{ \boxed{b = \sqrt{ c²-a² \: }}}[/tex]

[tex] \sf \: \bold{ Given: } \: c = 12.21 \: ; \: a=7 \: ; \: b= \: \red ?[/tex]

Substitute the given values of a and c to the given formula above, to get the unknown value (b).

  • [tex]b = \sqrt{ c²-a² \: }[/tex]

  • [tex]b = \sqrt{ 12.21²-7² \: }[/tex]

  • [tex]b = 10.0042[/tex]

  • [tex]b \approx \orange{ 10}[/tex]

_______________∞_______________

Ver imagen KlareMontefalco