Answer:
Step-by-step explanation:
In the given arithmetic series,
To find the sum of the series, we need to find the number of terms (n) at first. So,
[tex]a_{n} = a + (n - 1)d\\38 = 6 + (n - 1) 4\\38 - 6 = 4n - 4\\32 = 4n - 4\\32 + 4 = 4n\\36 = 4n\\36 \div 4 = n\\\boxed{9 = n}[/tex]
Now, let's find the sum of the arithmetic series (Sₙ).
[tex]S_{n} = \frac{n}{2} [2a + (n - 1)d]\\S_{n} = \frac{9}{2} [2*6 + (9 -1)4]\\S_{n} = \frac{9}{2} [12+ (8*4)]\\S_{n} = \frac{9}{2} [12+ 32]\\S_{n} = \frac{9}{2} (44)\\S_{n} = 9*22\\\boxed{S_{n} = 198}[/tex]
_______________
Hope it helps!
[tex]\mathfrak{Lucazz}[/tex]