Respuesta :

The sides and angles of a triangle can be determined using trigonometry ratios

The values of x, y and z are [tex]x = 14\sqrt 2[/tex], [tex]y =14[/tex] and [tex]z = 14\sqrt 3[/tex]

How to determine the missing values of the triangle

The upper triangle is a right triangle with an angle measure of 45 degrees.

So, the value of x is:

[tex]x = 14\sqrt 2[/tex]

Next, we calculate the hypotenuse (h) of the lower triangle using:

[tex]h^2 = (14\sqrt 2)^2 + (14\sqrt 2)^2[/tex]

So, we have:

[tex]h^2 = 784[/tex]

Take the square roots of both sides

[tex]h = 28[/tex]

The value of y is then calculated using the following sine ratio

[tex]\sin(30) = \frac y{28}[/tex]

Make y the subject

[tex]y =28 * \sin(30)[/tex]

Evaluate

[tex]y =14[/tex]

The value of z is then calculated using the following cosine ratio

[tex]\cos(30) = \frac z{28}[/tex]

Make z the subject

[tex]z =28 * \cos(30)[/tex]

Evaluate

[tex]z =28 * \frac{\sqrt 3}{2}[/tex]

[tex]z = 14\sqrt 3[/tex]

Hence, the values of x, y and z are [tex]x = 14\sqrt 2[/tex], [tex]y =14[/tex] and [tex]z = 14\sqrt 3[/tex]

Read more about right triangles at:

https://brainly.com/question/14628284

Ver imagen MrRoyal