simplify each expression

Solution (5):
Simplifying the expression.
Solution (6):
Simplifying the expression.
Solution (7):
Simplifying the expression.
Solution (8):
Simplifying the expression.
[tex]\qquad \qquad\huge \underline{\boxed{\sf Answer}}[/tex]
Let's solve ~
[tex]\qquad \sf \dashrightarrow \: (8x + 1) + ( - x + 7)[/tex]
[tex]\qquad \sf \dashrightarrow \: 8x + 1 - x + 7[/tex]
[tex]\qquad \sf \dashrightarrow \: 8x - x + 1 + 7[/tex]
[tex]\qquad \sf \dashrightarrow \: 7x + 8[/tex]
[tex]\qquad \sf \dashrightarrow \: (8x - 3) - (3 x + 1)[/tex]
[tex]\qquad \sf \dashrightarrow \: 8x - 3 - 3x - 1[/tex]
[tex]\qquad \sf \dashrightarrow \: 8x - 3x - 3 - 1[/tex]
[tex]\qquad \sf \dashrightarrow \: 5x - 4[/tex]
[tex]\qquad \sf \dashrightarrow \: (2x + 7) + (4x - 10)[/tex]
[tex]\qquad \sf \dashrightarrow \: 2x + 7 + 4x - 10[/tex]
[tex]\qquad \sf \dashrightarrow \: 2x + 4x + 7 - 10[/tex]
[tex]\qquad \sf \dashrightarrow \: 6x - 3[/tex]
[tex]\qquad \sf \dashrightarrow \: (- 7x + 2) - (3x - 3)[/tex]
[tex]\qquad \sf \dashrightarrow \: - 7x + 2 - 3x + 3[/tex]
[tex]\qquad \sf \dashrightarrow \: - 7x - 3x + 2 + 3[/tex]
[tex]\qquad \sf \dashrightarrow \: - 10x + 5[/tex]