Respuesta :
- Length be x
- Breadth be y
[tex]\\ \rm\Rrightarrow 2x+2y=28[/tex]
[tex]\\ \rm\Rrightarrow x+y=14[/tex]--(1)
And
- xy=45
[tex]\\ \rm\Rrightarrow (x-y)^2=(x+y)^2-4xy[/tex]
[tex]\\ \rm\Rrightarrow (x-y)^2=14^2-4(45)=196-180[/tex]
[tex]\\ \rm\Rrightarrow (x-y)^2=16[/tex]
[tex]\\ \rm\Rrightarrow x-y=4[/tex]--(2)
Adding (1) and (2)
- 2x=18
- x=9
And
- 9+y=14=>y=5
Answer:
B) 9 in x 5 in
Step-by-step explanation:
Let W = width of rectangle
Let L = length of rectangle
Area of a rectangle = WL
Perimeter of a rectangle = 2W + 2L
Given area = 45 and perimeter = 28:
⇒ WL = 45
⇒ 28 = 2W + 2L
Rewrite 28 = 2W + 2L to make W the subject:
⇒ 2W = 28 - 2L
⇒ W = 14 - L
Substitute W = 14 - L into WL = 45 and solve for L:
⇒ (14 - L)L = 45
⇒ 14L - L² = 45
⇒ L² -14L + 45 = 0
⇒ (L - 9)(L - 5) = 0
⇒ L = 9, L = 5
Substitute found values of L into W = 14 - L and solve for W:
⇒ W = 14 - 9 = 5
⇒ W = 14 - 5 = 9
As width < length, length = 9 in and width = 5 in