Respuesta :

The polynomial a,b,c,are not perfect square polynomial and the polynomial d is perfect square polynomial.

The given polynomial is

[tex]a) 36x^2-4x+16[/tex]

What is the form of perfect square polynomial?

[tex](ax+b)^2[/tex]

we solve this method by using perfect square method

add and subtract 1/9

[tex]36x^2-4x+16+\frac{1}{9}-\frac{1}{9}[/tex]

factor 36

[tex]\frac{143}{9}+36(x^2-\frac{x}{9}+\frac{1}{324} )[/tex]

Now complete the square

[tex]\frac{143}{9}+36(x^2-\frac{1}{18})^2[/tex]

Therefore this is not perfect square trinomial.

Similarly for

[tex]b) 16x^2-8x+36[/tex]

Complete square is,

[tex]16(x-\frac{1}{4})^2+35[/tex]

This polynomial is also not perfect square trinomial.

[tex]c) 25x^2+9x+4\\[/tex]

complete square is,

[tex]25(x+\frac{9}{50})^2+\frac{319}{100}[/tex]

This polynomial is not perfect square trinomial.

[tex]d)4x^2+20x+25\\[/tex]

complete square is,

[tex](2x+5)^2[/tex]

This polynomial is perfect square trinomial.

Therefore,

The polynomial a,b,c,are not perfect square polynomial and the polynomial d is perfect square polynomial.

To learn more about perfect square trinomial visit:

https://brainly.com/question/1538726