Answer:
x-12
Step by step explanation:
Here it is given that the area of a parallelogram is given by base * height. And if the area is represented by ,
[tex]\longrightarrow A = x^2-14x+24[/tex]
And the base of the parallelogram is given by,
[tex]\longrightarrow Base = x-2 [/tex]
Substituting the values in the given formula, we have;
[tex]\longrightarrow Area = base \times height [/tex]
[tex]\longrightarrow x^2-14x+24=h(x-2)\\ [/tex]
Divide both sides by (x-2) .
[tex]\longrightarrow h =\dfrac{x^2-14x+24}{x-2}[/tex]
Factorise the term in numerator,
[tex]\longrightarrow h =\dfrac{x^2-12x-2x+24}{x-2}\\[/tex]
[tex]\longrightarrow h =\dfrac{x(x-12)-2(x-12)}{x-2}\\ [/tex]
[tex]\longrightarrow h =\dfrac{(x-2)(x-12)}{x-2} [/tex]
Simplify,
[tex]\longrightarrow \underline{\underline{ height= x-12}} [/tex]
This is the required answer!