Respuesta :

Answer:

Step-by-step explanation:

[tex]S_{n}=\dfrac{n}{2}(2a + (n-1)*d)[/tex]

Here, n- number of terms ; d - common difference ;  a - first term

[tex]S_{8}=12\\\\\dfrac{8}{2}[2a+(8-1)*d]=12\\\\4[2a+7d]=12\\\\2a + 7d = \dfrac{12}{4}\\\\\\2a + 7d = 3 \ -----------------------(i)[/tex]

[tex]S_{16}=56\\\\\dfrac{16}{2}(2a+15d)=56\\\\\\8(2a+15d)=56\\\\2a + 15d=\dfrac{56}{8}\\\\\\[/tex]

2a + 15d = 7 ----------------(ii)

Subtract (i) from equation (ii)

(ii)         2a + 15d = 7

(i)          2a +   7d = 3  

           -      -          -  

                       8d = 4

                          d = 4/8

d = 1/2

Plugin d = 1/2 in equation (i)

[tex]2a +7*\dfrac{1}{2}=3\\\\\\2a = 3 -\dfrac{7}{2}\\\\\\2a =\dfrac{6}{2}-\dfrac{7}{2}\\\\\\2a=\dfrac{-1}{2}\\\\\\a=\dfrac{-1}{2*2}\\\\\\a=\dfrac{-1}{4}[/tex]

Second term =  first term + d

                      [tex]=\dfrac{-1}{4}+\dfrac{1}{2}=\dfrac{-1}{4}+\dfrac{2}{4}=\dfrac{1}{4}[/tex]

[tex]Third \ term =\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{1}{4}+\dfrac{2}{4}=\dfrac{3}{4}\\\\\\Fourth \ term =\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{3}{4}+\dfrac{2}{4}=\dfrac{5}{4}\\\\[/tex]

AP is :

[tex]\dfrac{-1}{4}; \dfrac{1}{4};\dfrac{3}{4};\dfrac{5}{4}.......[/tex]