Respuesta :

Answer:

[tex]x_{1}[/tex] = 0.847 or [tex]x_{2}[/tex] = -1.180 (to the nearest thousandths place or 3 d.p.)

Step-by-step explanation:

Quadratic equation (I actually memorized this because it will not come in exams):

[tex]x= \frac{-b+\sqrt{b^{2}-4ac } }{2a}[/tex] or [tex]x= \frac{-b-\sqrt{b^{2}-4ac } }{2a}[/tex]

Instead of 2 options of the formula you can use the sign ± after the minus b to make it one equation (but I cannot do that in this Brainly equation output function thing)

[tex]x = \frac{-1+\sqrt{1^{2}-4(3)(-3) } }{2(3)}[/tex] or [tex]x = \frac{-1-\sqrt{1^{2}-4(3)(-3) } }{2(3)}[/tex]

[tex]x = \frac{-1+\sqrt{1-12(-3) } }{2(3)}[/tex]  or [tex]x = \frac{-1-\sqrt{1-12(-3) } }{2(3)}[/tex]

[tex]x = \frac{-1+\sqrt{1+36 } }{6}[/tex]  or  [tex]x = \frac{-1-\sqrt{1+36 } }{6}[/tex]

[tex]x = \frac{-1+\sqrt{37} }{6}[/tex]  or [tex]x = \frac{-1-\sqrt{37 } }{6}[/tex]

[tex]x_{1}[/tex] = 0.84712708838 or [tex]x_{2}[/tex] = -1.18046042172

[tex]x_{1}[/tex] = 0.847 or [tex]x_{2}[/tex] = -1.180 (to the nearest thousandths place or 3 d.p.)