Respuesta :
Answer:
[tex]\frac{x+3}{x}[/tex] or x+3/x
Step-by-step explanation:
Using D.O.T.S (difference of two squares) formula :
[tex]a^{2} -b^{2} = (a+b)(a-b)[/tex]
[tex]x^{2} -9= (x+3)(x-3)[/tex]
Factorise the second bit:
[tex]x^{2} -3x = x(x-3)[/tex]
Now write out this fraction:
[tex]\frac{(x+3)(x-3)}{x(x-3)}[/tex]
Now we can cancel out repeated terms (x-3):
[tex]\frac{(x+3)}{x}[/tex]
This is our final answer:
[tex]\frac{x+3}{x}[/tex]
Answer:
[tex]x^{2} -3x-\frac{9}{x^{2} }[/tex]
Step-by-step explanation:
[tex]x^{2} -9[/tex] ÷ [tex]x^{2} -3x[/tex]
To add or subtract expressions, expand them to make their denominators the same. Multiply [tex]x^{2} -3x[/tex] times [tex]\frac{x^{2} }{x^{2} }[/tex]
-
[tex]\frac{(x^{2} -3x)x^{2} }{x^{2} } - \frac{9}{x^{2} }[/tex]
Since [tex]\frac{(x^{2} -3x)x^{2} }{x^{2} }[/tex] and [tex]\frac{9}{x^{2} }[/tex] have the same denominator, subtract them by subtracting their numerators.
-
[tex]\frac{(x^{2} -3x)x^{2} -9}{x^{2} }[/tex]
Do the multiplications in [tex](x^{2} -3x)x^{2} -9[/tex]
-
[tex]\frac{x^{4}-3x^{3}-9 }{x^{2} }[/tex]