Respuesta :

Answer:

[tex]\frac{1}{axy}[/tex]

Step-by-step explanation:

[tex]\frac{xy}{a^2+a^3}[/tex] × [tex]\frac{a+a^2}{x^2y^2}[/tex] ( factorise denominator and numerator of 2 fractions )

= [tex]\frac{xy}{a^2(1+a)}[/tex] × [tex]\frac{a(1+a)}{x^2y^2}[/tex]

Cancel (1 + a) from both fractions

= [tex]\frac{xy}{a^2}[/tex] × [tex]\frac{a}{x^2y^2}[/tex]

Cancel a and xy from both fractions

= [tex]\frac{1}{a}[/tex] × [tex]\frac{1}{xy}[/tex]

= [tex]\frac{1}{axy}[/tex]

a ≠ 0 , x ≠ 0 , y ≠ 0

as this would would make the function undefined

Answer:

Step-by-step explanation:

[tex]\dfrac{xy}{a^2+a^3}\times \dfrac{a+a^2}{x^2y^2}[/tex]

Apply the fraction rule [tex]\dfrac{a}{b}\times \dfrac{c}{d}=\dfrac{a \times c}{b \times d}[/tex] :

[tex]\implies \dfrac{xy(a+a^2)}{x^2y^2(a^2+a^3)}[/tex]

Cancel the common factor [tex]xy[/tex] :

[tex]\implies \dfrac{(a+a^2)}{xy(a^2+a^3)}[/tex]

Factor [tex](a+a^2)=a(1+a) \ \ \textsf{and} \ \ a^2+a^3=a^2(1+a)[/tex] :

[tex]\implies \dfrac{a(1+a)}{xy \cdot a^2(1+a)}[/tex]

Cancel the common factor [tex]a(1+a)[/tex] :

[tex]\implies \dfrac{1}{axy}[/tex]

I think the "if" part is a, x and y cannot equal zero, as otherwise the expression will be undefined.

So I would put: [tex]x\neq 0; y\neq 0, a\neq 0[/tex]