Help Me On This Plss!!

Answer:
1) In fig. (1) there are 2 shapes:
So,
Area of Rectangle = l × b
where,
➮ 12 × 14
➮ 168
Hence, the area of rectangle is 168cm².
Now,
Area of Triangle = ½bh
where,
➮ ½ × 8 × 12
➮ ½ × 96
➮ 48
Hence, the area of triangle is 48cm².
Thus, Area of the whole fig. :
Area of Rectangle + Area of Triangle
➮ 168 + 48
➮ 216cm² (Ans)
2) In fig. (2) there are also 2 shapes :
So,
Area of Semicircle = ½ (πr²)
where,
➮ ½ × 3.14 × (5)²
➮ ½ × 3.14 × 25
➮ ½ × 78.5
➮ 39.25
Hence, the area of semicircle is 39.25 in².
Now,
Area of Rectangle = l × b
where,
➮ 10 × 15
➮ 150
Hence, the area of rectangle is 150 in².
Thus, Area of whole fig. :
Area of Semicircle + Area of Rectangle
➮ 39.25 + 150
➮ 189.25 in² (Ans)
[tex]\bold{\huge{\underline{ Solutions }}}[/tex]
Given :-
We have,
We know that,
Area of rectangle
[tex]\bold{ = Length {\times} Breath}[/tex]
Subsitute the required values,
[tex]\sf{ = 12 {\times} 14}[/tex]
[tex]\sf{ = 168 \: cm^{2}}[/tex]
For triangle
Area of triangle
[tex]\bold{=}{\bold{\dfrac{ 1}{2}}}{\bold{ {\times} b{\times}h}}[/tex]
Subsitute the required values,
[tex]\sf{=}{\sf{\dfrac{ 1}{2}}}{\bold{ {\times}8{\times}12}}[/tex]
[tex]\sf{=}{\sf{\dfrac{ 1}{2}}}{\bold{ {\times} 96}}[/tex]
[tex]\sf{ = 48 \:cm^{2}}[/tex]
Thus, Area of triangle is 48 cm² .
The total area of the composite figure
= Area of rectangle + Area of triangle
[tex]\sf{ = 168 + 48}[/tex]
[tex]\bold{ = 216\: cm^{2}}[/tex]
Hence, The area of given composite figure is 216 cm²
Given :-
Here, we have
We know that,
Area of rectangle
[tex]\bold{ = Length {\times} Breath}[/tex]
Subsitute the required values,
[tex]\sf{ = 10 {\times} 15}[/tex]
[tex]\sf{ = 150 \: cm^{2}}[/tex]
For hemisphere
Area of semicircle
[tex]\bold{ = 1/2{\pi}r^{2}}[/tex]
Subsitute the required values,
[tex]\sf{ =}{\sf{\dfrac{ 1}{2 }}}{\sf{ {\times} 3.14 {\times} (5)^{2}}}[/tex]
[tex]\sf{ = }{\sf{\dfrac{1}{2}}}{\sf{ {\times}3.14 {\times} 25}}[/tex]
[tex]\sf{ = 1.57 {\times} 25}[/tex]
[tex]\sf{ = 39.25\: in^{2}}[/tex]
Thus, The area of semicircle is 39.25 in².
Total area of the given composite figure
= Area of hemisphere + Area of rectangle
= [tex]\sf{ = 150 + 39.25}[/tex]
[tex]\bold{ = 189.25\: in^{2}}[/tex]
Hence, The total area of the given composite figure is 189.25 in² .