Respuesta :

Answer:

x = 38 , y = 19

Step-by-step explanation:

using the tangent ratio in the right triangle and the exact valu

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{y}{19\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )

[tex]\sqrt{3}[/tex] × y = 19[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

y = 19

--------------------------------------------------

using the cosine ratio in the right triangle and the exact value

cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{19\sqrt{3} }{x}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

[tex]\sqrt{3}[/tex] × x = 38[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

x = 38