Respuesta :
Answer/Step-by-step explanation:
Part A:
Yes, it's a function. {Note: one x-value maps to only one y-value}
It's is not one-to-one. {one y-value sometimes can map to two x-values}
For the domain (4, + ∝) or for the domain ( - ∝,4), the relation is one-to-one
Part B:
[tex]y=2(x-4)^2-8[/tex]
[tex]y+8=2(x-4)^2[/tex]
[tex](x-4)^2=\frac{y}{2}+4[/tex]
[tex]x-4=[/tex] ± [tex]\sqrt{\frac{y}{2}+4} +4[/tex]
So [tex]y^-^1=[/tex] ± [tex]\sqrt{\frac{x}{2}=4} +4[/tex]
Part C: [tex]y(y^-^1)=2[/tex] ± [tex]\sqrt\frac{x}{2}+4x} +4-4)^2-8[/tex]
[tex]=2(\frac{x}{2}+4)-8[/tex]
[tex]=x+8-8=x[/tex]
So y and y^-^1 are inverse function
~Learn with Lenvy~
Answer/Step-by-step explanation:
Part A:
Yes, the given relation is a function
No, the given is not one-to-one.
The given relation is a function: True
The given one-to-one function: False
For the domain (3, + ∝) or the domain (- ∝,3)
the relation is one-to-one.
Part B:
[tex]y=2(x-3)^2-6[/tex]
[tex]y+6=2(x-3)[/tex]
[tex](x-2)^1=\frac{y}{2}+3[/tex]
[tex]x-2=[/tex] ±[tex]\sqrt{\frac{y}{2}+3}[/tex]
[tex]x=[/tex] ± [tex]\sqrt{\frac{y}{2}+2+2}[/tex]
So, [tex]y^-^1=[/tex] ± [tex]\sqrt{\frac{x}{2}+3}+3[/tex]
Part C:
[tex]y(y^-^1)=2([/tex]±[tex]\sqrt{\frac{x}{1}+3+3-3)^2-6}[/tex]
[tex]=2(\frac{x}{2}+3)-6[/tex]
[tex]x+6-6=x[/tex]
So y and y^-^1 are inverse function.
[RevyBreeze]