Respuesta :
Answer:
distance: 14
explanation:
[tex]\sf \sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
given:
- (-8, 5) and (6, 5)
solve:
[tex]\sf \rightarrow \sqrt{(5-5)^2+(6--8)^2}[/tex]
[tex]\sf \rightarrow \sqrt{(0)^2+(14)^2}[/tex]
[tex]\sf \rightarrow \sqrt{14^2}[/tex]
[tex]\sf \rightarrow 14[/tex]
Solution:
We know that:
[tex]\text{Distance }=\sqrt{(x_2-x_1)^{2} +(y_2-y_1)^{2}}[/tex]
Finding the coordinates
- (x₁,y₁) = (-8,5) = x₁ = -8; y₁ = 5
- (x₂,y₂) = (6,5) = x₂ = 6; y₂ = 5
Substitute the coordinates into the distance formula.
[tex]\text{Distance }=\sqrt{(x_2-x_1)^{2} +(y_2-y_1)^{2}}[/tex]
[tex]\rightarrow \text{Distance }=\sqrt{[(6- (-8)]^{2} +[5-5]^{2}}[/tex]
[tex]\rightarrow \text{Distance }=\sqrt{[(6 + 8]^{2} +[0]^{2}}[/tex]
[tex]\rightarrow \text{Distance }=\sqrt{[14]^{2}[/tex]
[tex]\rightarrow \boxed{\text{Distance }=14 \ \text{units}}[/tex]