Respuesta :

The solution of   [tex]\rm log(2t+4)=log(14-3t)[/tex]  is t=2

It is given that:

[tex]\rm log(2t+4)=log(14-3t)[/tex]

It is required to find the value of 't'.

What is Logarithm?

It is another way to represent the power of numbers ie.

[tex]a^b=c\\log_ac=b[/tex]

We have:

[tex]\rm log(2t+4)=log(14-3t)[/tex]   [tex]\rm (Taking \ log_1_0 \ base \ and \ removing \ the \ log_1_0 \ from \ both \ the\ side)[/tex]

We will get:

[tex]\rm 2t+4=14-3t\\\rm 5t=10\\\rm t=2[/tex]

Therefore the solution of   [tex]\rm log(2t+4)=log(14-3t)[/tex]  is t=2

Learn more about the Logarithm here.

https://brainly.com/question/163125