What is the positive solution to the equation 0 = –x2 2x 1? quadratic formula: x = startfraction negative b plus or minus startroot b squared minus 4 a c endroot over 2 a endfraction –2 startroot 2 endroot 2 – startroot 2 endroot 1 startroot 2 endroot –1 startroot 2 endroot

Respuesta :

The positive solution of the quadratic equation [tex]\rm 0=-x^2+2x+1[/tex]  is x=2.41

It is given that the quadratic equation:

[tex]\rm 0=-x^2+2x+1[/tex]

It is required to find the solution to the above quadratic equation.

What is a quadratic equation?

A quadratic equation is a second-degree algebraic equation represented by the:

[tex]\rm ax^2+bx+c=0[/tex]........(1)

Where a, b, and c are the constants and [tex]\rm a\neq 0[/tex]

We know that:

[tex]\rm x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

We have:

[tex]\rm 0=-x^2+2x+1\\\rm or \\\rm -x^2+2x+1=0[/tex] ..........(2)

After comparing (1) and (2) we get:

[tex]\rm a=-1, b=2, and \ c=1[/tex]

Put these values in the above formula we get:

[tex]\rm x=\frac{-2\pm \sqrt{2^2-(4)(-1)(1)}}{(2)(-1)}\\\rm x=\frac{-2\pm \sqrt{8}}{-2}\\\rm x=\frac{-2\pm 2\sqrt{2 }}{-2}\\\rm x={1\pm \sqrt{2}}[/tex]

[tex]\rm x=1+\sqrt{2} \ or \ x=1-\sqrt{2} \\\\\sqrt{2} = 1.41\\\rm so \ x= 1+1.41 \ or \ x= 1-1.41\\\rm x=2.41 or \ x=-0.41[/tex]

Thus, the positive solution of the quadratic equation is x=2.41

Learn more about quadratic equations here:

https://brainly.com/question/2263981

Answer:

x= 2.41

Step-by-step explanation: