Find the solutions to the equation 102x 11 = (x 6)2 – 2. which values are approximate solutions to the equation? select two answers. –9.6 –7.4 –4.6 –2.4 0.6

Respuesta :

The approximate soluton of the equation 102x + 11 = (x + 6)² – 2 is 0.6. Then the correct option is E.

What is a quadratic equation?

It is a polynomial that is equal to zero. Polynomial of variable power 2, 1, and 0 terms are there. Any equation having one term in which the power of the variable is a maximum of 2 then it is called a quadratic equation.

The quadratic equation is given below.

102x + 11 = (x + 6)² – 2

Open square, we have

       102x + 11 = x² + 12x + 36 – 2

x² – 90x + 23 = 0

By the formula, we have  the value of x

[tex]x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}\\\\x = \dfrac{90 \pm \sqrt{(-90)^2}-4*1*23}{2*1}\\\\x = 89.74, 0.256[/tex]

The approximate soluton of the equation 102x + 11 = (x + 6)² – 2 is 0.6. Then the correct option is E.

More about the quadratic equation link is given below.

https://brainly.com/question/2263981