Answer:
[tex]y(x)=\frac{5}{3\pi}-\frac{5\pi}{27+3\pi^2}e^{-3x}-\frac{15}{9\pi+\pi^3}cos(\pi x)-\frac{5}{9+\pi^2}sin(\pi x)[/tex]
Step-by-step explanation:
[tex]y''+3y'+2y=5sin(\pi x),\: y(0)=y'(0)=0\\\\\mathcal{L}\{y''\}+3\mathcal{L}\{y'\}+2\mathcal{L}\{y\}=\mathcal{L}\{5sin(\pi x)\}\\\\s^2Y(s)-sy(0)-y'(0)+3[sY(s)-y(0)]+2Y(s)=\frac{5\pi}{s^2+\pi^2}\\\\s^2Y(s)+3sY(s)=\frac{5\pi}{s^2+\pi^2}\\ \\(s^2+3s)Y(s)=\frac{5\pi}{s^2+\pi^2}\\ \\Y(s)=\frac{5\pi}{(s^2+\pi^2)(s^2+3s)}\\ \\Y(s)=\frac{5\pi}{s(s+3)(s^2+\pi^2)}[/tex]
Perform the partial fraction decomposition
[tex]\frac{5 \pi}{s \left(s + 3\right) \left(s^{2} + \pi^{2}\right)}=\frac{A}{s}+\frac{B}{s + 3}+\frac{C s + D}{s^{2} + \pi^{2}}\\5\pi=s \left(s + 3\right) \left(C s + D\right) + s \left(s^{2} + \pi^{2}\right) B + \left(s + 3\right) \left(s^{2} + \pi^{2}\right) A\\\\5 \pi=s^{3} A + s^{3} B + s^{3} C + 3 s^{2} A + 3 s^{2} C + s^{2} D + \pi^{2} s A + \pi^{2} s B + 3 s D + 3 \pi^{2} A\\\\5\pi=s^3(A+B+C)+s^2(3A+3C+D)+s(\pi^2A+\pi^2B+3D)+3\pi^2A[/tex]
Solve for each constant
[tex]\begin{cases} A + B + C = 0\\3 A + 3 C + D = 0\\\pi^{2} A + \pi^{2} B + 3 D = 0\\3 \pi^{2} A = 5 \pi \end{cases}[/tex]
[tex]3\pi^2A=5\pi\\A=\frac{5}{3\pi}[/tex]
[tex]A+B+C=0\\3A+3B+3C=0\\(3A+3B+3C=0)-(3A+3C+D=0)\\3B-D=0\\3B=D[/tex]
[tex]\pi^2A+\pi^2B+3D=0\\\pi^2(\frac{5}{3\pi})+\pi^2B+3(3B)=0\\\frac{5\pi}{3}+\pi^2B+9B=0\\ B(\pi^2+9)=-\frac{5\pi}{3}\\B=-\frac{5\pi}{3(\pi^2+9)}\\B=-\frac{5\pi}{3\pi^2+27}[/tex]
[tex]3B=D\\3(-\frac{5\pi}{3\pi^2+27})=D\\-\frac{5\pi}{\pi^2+9}=D[/tex]
[tex]A+B+C=0\\\frac{5}{3\pi}-\frac{5\pi}{3\pi^2+27}+C=0\\\frac{15\pi^2+135}{3\pi(3\pi^2+27)}-\frac{15\pi^2}{(3\pi)(3\pi^2+27)}+C=0\\\frac{135}{9\pi^3+81\pi}+C=0\\\frac{15}{\pi^3+9\pi}+C=0\\C=-\frac{15}{\pi^3+9\pi}[/tex]
Take the inverse transform and solve for the IVP
[tex]Y(s)=\frac{\frac{5}{3 \pi}}{s}+\frac{- \frac{5 \pi}{27 + 3 \pi^{2}}}{s + 3}+\frac{- \frac{15 s}{9 \pi + \pi^{3}} - \frac{5 \pi}{9 + \pi^{2}}}{s^{2} + \pi^{2}}\\\\Y(s)=\frac{\frac{5}{3 \pi}}{s}-\frac{\frac{5 \pi}{27 + 3 \pi^{2}}}{s + 3}-\frac{ \frac{15 s}{9 \pi + \pi^{3}}}{s^{2} + \pi^{2}}-\frac{\frac{5\pi}{9+\pi^2} }{s^2+\pi^2}\\ \\y(x)=\frac{5}{3\pi}-\frac{5\pi}{27+3\pi^2}e^{-3x}-\frac{15}{9\pi+\pi^3}cos(\pi x)-\frac{5}{9+\pi^2}sin(\pi x)[/tex]