Which of the following is a simpler form of the expression startfraction sine (theta) secant (theta) over cosine (theta) tangent (theta) endfraction? sec theta cos theta csc theta tan theta

Respuesta :

The simpler form of the expression  [tex]\rm \frac{sin\theta sec\theta}{cos\theta tan\theta}[/tex]  is  [tex]\\\rm sec\theta[/tex].

It is given that the expression  [tex]\rm \frac{sin\theta sec\theta}{cos\theta tan\theta}[/tex]

It is required to find the simpler form from the given options.

What is the trigonometric ratio?

The trigonometric ratio is defined as the ratio of the pair of a right-angled triangle.

We have the expression:

[tex]\rm= \frac{sin\theta sec\theta}{cos\theta tan\theta}[/tex]

We know:

[tex]\rm cos\theta = \frac{1}{sec\theta} \\\\\rm tan\theta = \frac{sin\theta}{cos\theta}[/tex]

By using these trigonometry formulas, we get:

[tex]\rm= \frac{sin\theta sec\theta}{cos\theta tan\theta}\\\\\rm= \frac{sin\theta }{(cos\theta) (cos\theta) \frac{sin\theta }{cos\theta} }\\\\\rm= \frac{1}{cos\theta} \\\\\rm = sec\theta[/tex]

Thus, the simpler form of the expression [tex]\rm \frac{sin\theta sec\theta}{cos\theta tan\theta}[/tex]  is [tex]\\\rm sec\theta[/tex].

Know more about trigonometry here:

https://brainly.com/question/26719838

Answer:

option A: sec Ø

Step-by-step explanation: