Respuesta :
Use the old exp-log trick and properties of the logarithm to rewrite the limit as
[tex]\displaystyle \lim_{n\to\infty} \left(\frac{n^n \left(x+\frac n1\right) \left(x+\frac n2\right) \cdots \left(x+\frac nn\right)}{n! \left(x^2+\left(\frac n1\right)^2\right) \left(x^2+\left(\frac n2\right)^2\right) \cdots \left(x^2+\left(\frac nn\right)^2\right)}\right)^{\frac xn}[/tex]
[tex]\displaystyle = \exp\left[\lim_{n\to\infty} \frac xn \ln \left(\frac{n^n \left(x+\frac n1\right) \left(x+\frac n2\right) \cdots \left(x+\frac nn\right)}{n! \left(x^2+\left(\frac n1\right)^2\right) \left(x^2+\left(\frac n2\right)^2\right) \cdots \left(x^2+\left(\frac nn\right)^2\right)}\right)\right][/tex]
[tex]\displaystyle = \exp\left[x \lim_{n\to\infty}\frac1n\ln\left(\frac{n^n}{n!}\right) + \frac1n \sum_{k=1}^n \ln\left(x+\frac nk\right) - \frac1n \sum_{k=1}^n \ln\left(x^2+\left(\frac nk\right)^2\right)\right][/tex]
[tex]\displaystyle = \exp\left[x \lim_{n\to\infty}\frac1n\ln\left(\frac{n^n}{n!}\right) + \frac1n \sum_{k=1}^n \ln\left(x+\frac1{k/n}\right) - \frac1n \sum_{k=1}^n \ln\left(x^2+\frac1{\left(k/n\right)^2}\right)\right][/tex]
The first limit converges to 0, since n! asymptotically behaves like nⁿ, so ln(nⁿ/n!) → ln(1) = 0.
The two remaining sums converge to definite integrals:
[tex]\displaystyle \lim_{n\to\infty} \frac1n \sum_{k=1}^n \ln\left(x + \frac1{\frac kn}\right) = \int_0^1 \ln\left(x + \frac1y\right) \, dy = \frac{(x+1) \ln(x+1)}x[/tex]
[tex]\displaystyle \lim_{n\to\infty} \frac1n \sum_{k=1}^n \ln\left(x^2 + \left(\frac1{\frac kn}\right)^2\right) = \int_0^1 \ln\left(x^2 + \frac1{y^2}\right) \, dy = \frac{2\tan^{-1}(\sqrt x)}{\sqrt x} + \ln(1+x)[/tex]
It follows that
[tex]f(x) = \exp\left[x\left(0 + \dfrac{(x+1)\ln(x+1)}x - \dfrac{2\tan^{-1}(\sqrt x)}{\sqrt x} - \ln(x+1)\right)\right][/tex]
[tex]f(x) = \exp\left[\ln(x+1) - 2\sqrt x \tan^{-1}(\sqrt x)\right][/tex]
[tex]f(x) = (x+1) e^{-2\sqrt x \tan^{-1}(\sqrt x)}[/tex]
By computing f'(x) and f''(x), it's easy to show that f'(x) ≤ 0 and f''(x) ≥ 0 for all x > 0. So f(x) is decreasing and f'(x) is increasing, and
• (A) f(1/2) ≥ f(1) is true
• (B) f(1/3) ≤ f(2/3) is false
• (C) f'(2) ≤ 0 is true
• (D) f'(3)/f(3) ≥ f'(2)/f(2) ⟺ f'(3)/f'(2) ≥ f(3)/f(2) ⟺ (something larger than 1) ≥ (something smaller than 1) is true